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Abstract

With its wide range of spectroscopic capabilities, the Near Infrared Spectrograph (NIRSpec) on the
James Webb Space Telescope (JWST) is expected to usher in a new era of crowded-field extragalac-
tic stellar spectroscopy. However, small sample sizes and limited overlap with ground-based surveys,
such as APOGEE, pose challenges for NIRSpec data analysis. In this work, we present STARCLIP: a
contrastive self-supervised learning framework that embeds observed APOGEE and ab initio NIRSpec
spectra into a unified, physically meaningful latent space. Our approach consists of training convo-
lutional neural networks (CNNs) to recover twenty fundamental stellar properties from single-modal
spectroscopic data. We then adopt these pre-trained CNNs as encoders, aligning them via contrastive
loss. To simulate realistic NIRSpec observations, we construct semi-empirical, stochastic NIRSpec cat-
alogs and embed them into the shared latent space using MOCKSTARCLIP, a modified CLIP-based
framework. Both models enable seamless transfer to downstream tasks, including cosine similarity
search and stellar property recovery. Notably, a linear regressor applied to STARCLIP embeddings
recovers all twenty stellar properties of interest with 2 scores typically exceeding 0.88, including Tog
(with uncertainty < 200 K), logg (<0.07 dex) and [Fe/H] (<0.03 dex) for RBG-like stars. Applying
the regressor on MOCKSTARCLIP embeddings yields modestly reduced precision—approximately 450
K for Tig, 0.11 dex for logg and 0.06 dex for [Fe/H]. Ultimately, our approach demonstrates that
foundation models for NIRSpec and other spectral surveys with similar constraints is well within reach.
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Glossary

A Set of 19,001 qualified real APOGEE spectra.

J Set of 19,001 ab initio JWST /NIRSpec spectra.

A Set of 95,005 augmented APOGEE spectra derived from A.

[A] Truncated version of A to match the dimensionality of J.

J Set of 95,005 augmented, mock JWST /NIRSpec spectra derived from 7.
J'© Set of 250 spectra augmented, mock JWST/NIRSpec spectra derived from 7.
JM Extended-mock version of J,, enriched with 5,000 spectra in the test set.
Z7 JWST/NIRSpec embeddings generated by feo(J).

Z4 APOGEE embeddings generated by go(.A).

Z° JWST/NIRSpec embeddings from fo (7).

ZB JWST /NIRSpec embeddings from for (Ji)-



1 Introduction

Absorption features on a star’s spectrum encode its physical and chemical properties, which in turn
provide a ‘fossil record’ of the formation history of its host galaxy [1]. The Near Infrared Spectroscopic
Instrument (NIRSpec) [2, 3] on board the James Webb Space Telescope (JWST) [4] exhibits unique
spectroscopic capabilities. With high angular resolution (R = 2,700) and sensitivity in the infrared (IR)
range (0.6-5.3 pm), JWST/NIRSpec (hereafter, NIRSpec) enables efficient, high-quality resolved star
spectroscopy of neighbouring galaxies that have so far been too distant, faint or crowded for previous
instruments to detect. Although current datasets are limited in size (n ~ 100), these capabilities have
motivated the launch of several recent astronomical programs, including (i) completed surveys of ~100
red giant branch (RGB) stars in M31 (JWST-GO-2609; PI: Nidever!), (ii) an ongoing survey of ~200
RGB stars across three isolated dwarf galaxies (JWST-GO-3788; PI: Wiesz?) and (iii) an upcoming
survey to observe ~200 more M31 disc stars (JWST-GO-4735; PI: Sandford?).

However, due to its novelty and uniqueness, the domain of JWST resolved-star spectroscopy remains
largely unexplored, with open challenges in data collection, preprocessing, and analysis. In parallel, a
growing number of astronomical surveys have adopted data-driven machine learning (ML) methods to
extract insights from spectroscopic data. Broadly, these approaches fall into two categories:

e Supervised algorithms use input-output pairs to learn the mapping from a set of features (e.g.,
stellar spectra) to a set of target variables (e.g., stellar labels?) in order to perform discriminative
tasks (e.g., stellar property recovery). These approaches perform well in data-rich regimes, but
are ultimately constrained by the quality and quantity of labelled data available. Moreover, such
models are often task-specific and generalise poorly to data distributions outside their training
sets. Prominent data-driven models for inferring stellar labels from spectroscopic data include THE
CANNON [5], STARNET [6], ASTRONN [7], DD-PAYNE [8] and BINGo [9].

e Unsupervised algorithms circumvent the need for labelled data by learning directly from raw input
features and producing non-invertible outputs, such as: (i) clusters of similar objects, (ii) lists of
detected anomalies, or (iii) low-dimensional representations of the data [10]. By revealing previously
unknown structure in the data, these methods are arguably more useful for ‘Al for science’ research,
as illustrated in [11, 12]. However, their performance often lags behind their supervised counterparts,
limiting their adoption in practice [13, 14, 15].

Large-scale surveys such as Apache Point Observatory Galactic Evolution Experiment (APOGEE)
[16, 17], Galactic Archaeology with HERMES (GALAH) [18] and Large Sky Area Multi-object Fiber
Spectroscopic Telescope (LAMOST) [19] provide large (n ~ 105-107), homogeneous databases of la-
belled spectra that are virtually ideal for supervised ML. In contrast, NIRSpec programs generate
much smaller samples (n ~ 100), limiting their suitability for supervised analysis. Moreover, substan-
tial differences in field-of-view (FoV) and sensitivity between NIRSpec and ground-based surveys pose
challenges in identifying cross-instrument targets that could inform NIRSpec analysis. For example,
NIRSpec can resolve sources separated by ~1 arcsec within a compact 3.6 x 3.4 arcmin? FoV [2], while
APOGEE imposes a minimum separation of ~1 arcmin across a broader 1.5° radius circular FoV [17].
NIRSpec also achieves superior faint-end sensitivity [2], detecting sources several magnitudes fainter
than APOGEE’s limiting magnitude. Given the lack of overlap, one potential theory-driven strategy
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4In this context, ‘labels’ refers to physical quantities that characterise a stellar spectrum, including stellar parameters
and chemical abundances.



is to generate a discrete set of ab initio, single-modal® NIRSpec models. Frameworks like THE PAYNE
[20] can then interpolate the ensemble of synthetic spectra to fit observed NIRSpec spectra, enabling
the simultaneous recovery of multiple stellar parameters. Unfortunately, idealised instruments and
physical assumptions in synthetic models often introduce a ‘synthetic gap’, causing systematic offsets
between ab initio spectra and real observations [21]. We investigate a partial remedy: generating ab
initio, semi-empirical NIRSpec data to pair with real APOGEE observations, resulting in a cross-modal
dataset that can benefit from a synergistic analysis.’
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Figure 1: Hlustration of STARCLIP model architecture; the MOCKSTARCLIP architecture is analo-
gous. Two encoders, fp and gg, separately embed cross-modal JWST /NIRSpec and APOGEE spectra
into a shared embedding space, where they are aligned under contrastive loss. The learned embed-
dings encode high-level physical information, enabling seamless transfer to downstream tasks. The two
modalities are distinguished by colour, with JWST /NIRSpec in blue and APOGEE in red.

One promising ML approach to analyse cross-modal realisations is self-supervised learning (SSL).
SSL pre-trains models to solve a suite of auxiliary pretext tasks, in which the supervision signals are
acquired directly from the data itself without explicit labels [24]. Once pre-trained, these models
can extract high-quality latent representations that serve as a ‘foundation’ for improving performance
[25, 26, 27], generalisation [28, 29] and robustness [30, 31] on downstream tasks. For this reason, they
are often referred to as foundation models [32]. Foundation models have already closed the gap with
supervised approaches across numerous tasks, particularly by leveraging transfer learning to support
applications in settings that are insufficiently data-rich to train models from scratch [32].

5‘Modality’ refers to the type of data input. In this context, it refers to the astronomical program used to collect the
spectra, such as APOGEE or JWST/NIRSpec.

50ur cross-modal approached is motivated, in part, by recent work [22, 23] showing that combining APOGEE and
Gaia spectra in a unified ML framework improves stellar inferences over single-modal models, as noted in [29].



In this work, we introduce STARCLIP, and its variant MOCKSTARCLIP, cross-modal foundation mod-
els for stellar spectroscopy. Our approach consists of two stages. First, we train flexible 1-dimensional
convolutional neural networks (1D-CNNs) on single-modal spectroscopic data to predict a set of stellar
labels. Second, we repurpose the pre-trained CNNs as encoders to embed cross-modal data into a
shared latent space. These encoders are jointly trained under a contrastive objective, whereby aug-
mented” views of the same underlying star are brought closer together while those of different stars are
pushed apart. We show the resulting embeddings are seamlessly transferrable across a wide range of
downstream tasks—including semantic similarity searches and stellar property estimation—ultimately
facilitating analysis of NIRSpec data.

Spectroscopic data consist of 19,001 pairs of APOGEE Sloan Digital Sky Survey IV® Data Release
17 (SDSS-IV DRI17) [34] and theoretical NIRSpec spectra, the latter generated ab initio from stellar
atmosphere and spectrum synthesis models maintained by R. Kurucz [35, 36, 37, 38, 39, 40]. Each pair is
annotated with stellar labels, consisting of atmospheric parameters Teg , log g and [Fe/H]—the primary
determinants of RGB spectral flux—along with 17 other elemental abundances [X/H], including C, N,
O, Na, Mg, Al, Si, S, K, Ca, Ti, V, Cr, Mn, Co, Ni and Ce. To bridge the ‘synthetic gap’, we apply
a suite of semi-empirical, stochastic augmentations to the ab initio NIRSpec data, yielding a ‘mock’
dataset. To further approximate real NIRSpec observations, we select a representative subsample of 250
stars from the ab initio dataset and apply two levels of stochastic transformations, generating ‘mock’
and ’extended-mock’ versions. A small sample (n = 59) of representative spectral traces from JWST-
GO-3788 (PI: Weisz) is used to inform these transformations. STARCLIP and MOCKSTARCLIP result
from applying our methodology to cross-modal datasets comprised of augmented APOGE x mock
NIRSpec and subsampled mock-extended x mock NIRSpec pairs, respectively.

A schema of our approach is depicted in Figure 1. By combining a well-characterised set of real
APOGEE observations with ab initio NIRSpec data, STARCLIP is poised to learn cross-modal repre-
sentations that are more informative of stellar properties than either modality alone. By transferring
the pre-trained weights of STARCLIP to MOCKSTARCLIP, we enable MOCKSTARCLIP to leverage
prior knowledge from the larger training regime, while adjusting to a scaled-down setting that reflects
observational characteristics expected of real NIRSpec data.

We summarise the contributions of this paper, as follows:

e To the best of our knowledge, we develop one of the first self-supervised foundation models for
analysing NIRSpec data, along with a pipeline to ensure seamless integration with observed data.

e We train robust CNNs in a supervised setting to predict stellar parameters with high precision and
accuracy.

e We apply cross-modal contrastive training to align pre-trained encoders around shared physical
properties, creating a discriminative latent space.

e We apply dimension-reduction to the latent space, visualising its intrinsic local geometry in a lower-
dimensional setting.

e With minimal processing, our models enable accurate transfer to downstream tasks, including (i)
in-modal and cross-modal cosine similarity searches and (ii) stellar property estimation from spectra.
These tasks empirically show that latent embeddings capture key physical properties of underlying
stars.

"In this context, an ‘augmented view’ refers to a synthetically modified version of an original data point, generated to
increase the number of positive pairs for training (see, e.g., [33] for details).
Shttps://www.sdss4.org/



1.1 Related Works

This paper builds on two recent works. First, Fabbro et al. [6] introduce STARNET, a CNN model
capable of determining atmospheric stellar parameters—T.g., log g, and [Fe/H|—directly from observed
APOGEE and ab initio APOGEE ATLAS9/ASSeT [41, 42] spectra. Second, Parker et al. [27] develop
ASTROCLIP, a versatile foundation model that can embed cross-modal representations of galaxy im-
ages and spectra in a unified latent space. Their approach involves pre-training transformer-based
encoders for images and spectra in a self-supervised setting, followed by aligning the encoders under
contrastive loss. Parker et al. [27] show the resulting embeddings achieve state-of-the-art performance
across a variety of downstream tasks—including photometric redshift estimation and physical property
prediction—surpassing even supervised baselines. Both articles provide public access to their data and
code on GitHub via the StarNet and AstroCLIP repositories.

In this work, we build our own foundation models in a two-step process involving carefully modified
versions of STARNET and ASTROCLIP.

1.2 Outline

Code for our models is publicly available under an MIT License in the StarCLIP GitHub repository.
Our paper is organised, as follows. In §2, we provide theoretical background on supervised and self-
supervised methods relevant to this work, addressing their merits and disadvantages. In §3, we provide
the spectrosopic datasets used for analysis. In §4, we discuss in detail the implementation and training
process of the STARCLIP and MOCKSTARCLIP models. We present our results on in-modal and
cross-modal similarity searches, dimension reduction and stellar property prediction in §5. Finally, §6
contains some concluding remarks and further extensions to our work.

1.3 Notations

In this paper, we use [n], where n € N, to denote the set {1,...,n}. Given two datasets X', € R"*¢
of equal size, we define their elementwise pairing as X x Y := {(x;,y;) : i € [n]}. We write | - | to
denote the length of vectors and || - || to represent their Euclidean fo-norm. We write a > b whenever
there exists a sufficiently small constant ¢ such that b/a < ¢ holds. Finally, we denote by a ® b the
convolution operation between vectors A and b.

2 Machine Learning Methodology

In this section, we formalise the supervised and self-supervised methodologies underlying our models.

2.1 Supervised Learning

Let X € X CR" and Y € Y C R™ be random variables, where Y = f(X), for some unknown f.
In supervised learning, the algorithm is provided with a set of training examples {(z;, yi)}iTzl, drawn
from the joint distribution of X and Y. The goal is to learn a mapping f : X — ) that minimises the
expected loss, as measured by a specific loss function L : Y? — R. Formally, this can be expressed as:

A~

f = argminge zE[L(Y, f(X))]; (2.1)

where F is the space of hypotheses functions (see, e.g., [43]). In regression tasks, choosing the mean
squared error (MSE) loss gives: f = argminsczE[Y — F(X)]2.
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2.1.1 1D-CNNs: Feedforward Stage

1D-CNNSs are a class of deep learning algorithms that solve equation (2.1) by adaptively learning spatial
hierarchies of features in the input data. These networks process each training example x € X through
a sequence of computational layers, which, in this analysis, consists of: (i) N¢r, = 2 convolutional layers
(CLs), (ii) an average-pooling layer and (iii) Npcr, = 3 fully connected layers (FCLs) (see Figure 5).
Hereon, let () denote the output of the Ith layer.

x(i) {ca, ..., Cj(l)(i), . CDYT
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Figure 2: A 1D multi-filter convolution applied to an input signal = of length n, using a filter bank
{Wj(l)}?:1 with p filters of size s(!). The result is a 2D matrix whose Jth column C](-l) is obtained by a
single convolution (Equation 2.2). Ilustration adapted from [44].

(i) Convolutional layers. Let {Wj(l) ?:1 denote a set of p filters, each of size s(). Each filter slides
along the input signal z, aggregating local information from contiguous segments of s(!) elements.
Assuming a stride of 1, the discrete convolution between the filter weights and the input is computed
as:

e
eV = (@@ W) (@) =3 2y W (w), (2.2)

u=1
where C’j(.l) is a vector of length n — s +1. As illustrated in Figure 2, applying all p filters produces

a matrix C(M) e R(”_S(I)H)XP, where the Jth column corresponds to the convolution output C’j(.l)(i)

defined in Equation 2.2. Adding a bias term bg-l) € R and applying an activation map ¢ : R — R to
the ijth element of C') gives the ijth convolved feature of the feature map ¢(1):

¢y =9 (cj.” (4) + b§.1>) . (2.3)

To capture higher-order features, a second convolution is applied independently to each of the p

)

columns Cj(l using a multi-filter represented by a third-order tensor of shape s x p x ¢, where s(2)

is the filter size and p X ¢ is the number of filters. The result is a matrix C?) R("_S(Z)H)Xq, where



2)

each column C’j is computed by the sum of p convolutions:

(i) ﬁi( e W) ). (2.4)
=1

Adding bias b§-2) and applying ¢ elementwise produces the feature map:

G =0 (P60 +57). (2:5)

(ii) Average-pooling layer. The pooling layer downsamples the feature map ¢(® by a factor of w,
thereby compressing its size while retaining only the strongest features learned in the CLs. Average-
pooling is performed by sliding a window of size w along each column of (@), extracting the average
value from each windowed sub-region, as follows:

Ew: wi —k+ 1). (2.6)

k=1

S\H

This operation produces a downsampled output ¢ of shape w X g.
iii) Fully connected layers. A flattening operation is applied to re-shape the 2D output (3) into a
(iii) y y g op pp p put

1D vector f of length wq:

JG +n(i = 1) = ¢V ), (2.7)
which can be fed into the fully-connected network. Assuming each FCL is parameterised by weights
and biases (W©,b(®)), then:

IS
@ =0l >, WOUNG)+0G) |, (28)
j=1
where [¢®)| = wq and |¢®)] is equal to the length of the true label or ‘target’ associated to .

The final output of the network is Cout := (), representing the network’s prediction of the target
associated to z. While common activation functions include sigmoid, tanh and the rectified linear unit
(ReLU), our work makes ad hoc use of the exponential linear unit (ELU) function:

z if z>0,
olz) = {a(ez —1) ifz<o0, (29)

where a € Ryg.

2.1.2 1D-CNNs: Backpropagation Stage

The layers of the network collectively transform the input x into a non-linear output f(:U;W,b),
where W and b denote the set of filters/weights and biases, respectively. For each batch of T training
examples {(z;,9:)}1_;, W and b can be estimated by minimising the empirical loss between predictions
and targets:

W,b = argmanbT Z lyi — f(zi; W, b)]|%, (2.10)
=1



where regularisation is neglected for simplicity. During training, a suitable gradient-based optimiser
is used to minimise the loss in Equation (2.10). Using backpropagation, the optimiser propagates the
loss function backwards through the network, computing gradients of the loss with respect to each
parameter via the chain rule. These gradients indicate the direction and magnitude by which each
parameter should be adjusted to reduce the loss, enabling iterative updates until convergence. In this
work, we use the Adam optimiser [45], which is particularly well-suited for optimising loss where the
underlying datasets are large and/or the parameter spaces are high-dimensional. With low memory
requirements, Adam efficiently minimises the objective function by leveraging adaptive estimates of
first- and second-order moments to dynamically adjust learning rates [45].

Although 1D-CNNs have achieved state-of-the-art performance, particularly in computer vision tasks,
their computational cost poses a challenge. Due to their high parameter count, these models typically
require large volumes of labelled training data, which limits their applicability in settings where datasets
are small [46, 47, 48] or where annotations are scarce, expensive or even unavailable [49].

2.2 Self-supervised Learning

An alternative to supervised learning, SSL has gained increasing attention for its ability to efficiently
train large-scale models without explicit labels. Instead, SSL leverages the data itself as supervision by
revealing complex structures and co-occurence relationships between data components or augmented
views of the same instance [50]. As summarised in [51], SSL methods can be broadly classified into
three paradigms:

e Contrastive: trains an encoder to map input pairs (z1,x2) to embeddings (21, 22) to measure the
similarity between them.

e Generative: trains an encoder-decoder pair to map input z to an embedding z and then reconstruct
z from z.

e Adversarial: trains an encoder-decoder pair to generate false samples and a discriminator to
distinguish them from real samples.

In this work, we focus exclusively on contrastive SSL algorithms, which have recently outperformed
even SL [52, 53, 54].

2.2.1 Contrastive Learning

As defined in [55], contrastive learning differentiates between semantically similar (positive) and dis-
similar (negative) pairs of augmented views of data points, encouraging representations of positive
pairs to be mapped closer together in latent space, while pushing those of negative pairs apart These
augmentations preserve the semantic content of the original observation while modifying other ‘nui-
sance’ aspects, promoting the learning of invariant features that enhance generalisation to downstream
tasks [56, 57]. As an example, Contrastive Language-Image Pretraining (CLIP) [58] trains encoders to
contrast images with their corresponding language-based descriptions, where the image is augmented
with random square crops and the text with bi-grams with high pointwise mutual information (MI) for
the pair.

To formalise this, let X C R™ and Y C R™ be the input space of two different modalities. Consider a
batch of N unlabelled samples {(z1,41), ..., (zn,yn)} € X x Y, where (z;,y;) is semantically related,
e.g., a NIRSpec spectrum and its APOGEE pair. Apply random augmentations A(-) and A(-) to inputs
x; and y;, respectively. CLIP’s objective is to learn a pair of encoders fp : X — R? and gg : Y — R%,
d < min(n,m), that compress the two modalities from raw space into a shared latent space, such that



2% = fo(A(x;)) and zjy := go(A(y;)) are close to each other if they share ‘similar’ semantics, otherwise
far away. For a given x;, we refer to ziX as the anchor and to z]y as a positive sample if ¢ = 7 and as a

negative sample otherwise.

The standard loss used to train these encoders is the Information Noise Contrastive Estimation (In-
foNCE) [59]:

exp(si/T) '
exp(sii/T) + 3 sy exp(si; /7)

LintoNcE(fo, 90,7) = —E |log (2.11)

Here, 7 € R denotes a trainable temperature parameter, discussed in §2.2.2, and s;; := s(ziX , zjy ) is

a similarity measure between the features z;¥ and ij . In our setting, we use cosine similarity:

(%, 2))
Sij = — L (2.12)
[EI el

X LY

Minimising Equation (2.11) encourages alignment for positive pairs (2;*, 2;") while penalising similarity

with negative ones (2%, z]y),j # i.

Of note, InfoNCE has an insightful connection to MI. A formal proof given by [59] and [60] shows that,
for any two vectors x; € X and y; € YV, with representations z; and z;, respectively,

(25 2)) > log(k) — LintoNcE, (2.13)
where k is the number of negative samples associated to a given sample x;. This shows that minimising
LinfoNcE Maximises the variational lower bound on the MI I(z;; zé), which is itself bounded above by
I(z;y5) through the data-processing inequality. Moreover, the log-dependency on k implies that having
more negative samples leads to improved representations, a fact formally proved by Tian et al. [61].
Altogether, InfoNCE provides a good lower bound approximation to MI, enjoying greater stability and
lower variance than most other competing approaches [62].

2.2.2 Role of Temperature in Contrastive Learning

Intuitively, the temperature 7 controls the sensitivity of the InfoNCE loss. A smaller 7 tends to penalise
much more on hard’ negative samples (HNS), pushing their latent features further away from those
of the anchor [63]. As a result, the local structure of each anchor tends to be more separated, and
the embedding distribution appears to be more uniform [63]. Conversely, a larger 7 reduces the loss’
sensitivity to HNS, resulting in more compact, clustered latent features [64]. In practice, 7 has been
shown to crucially impact the quality of a model’s learned embeddings (e.g., [19, 65, 66]).

The phenomenon of larger 7 inducing semantic structure in representation space has been demonstrated
empirically (e.g., [19, 66]), but is otherwise poorly understood. To gain a little insight, we follow the
setup of [67] and perform a change-of-variables in Equation (2.11), in which similarities s;; are replaced
by ‘distances’ d;;:

l—Sij

dij = — (2.14)

cii = exp(d;;), (2.15)

9A hard negative sample (HNS) is defined as a negative sample with high cosine similarity to the anchor; consequently,
it appears as a nearest neighbour to the anchor. Conversely, easy negative samples (ENS) are easily distinguishable from
the anchor by simple patterns and are therefore more distant in embedding space.



where it is clear 0 < d;; < 2/7. This allows us to rewrite each summand, L, of the InfoNCE loss as:

N
; exp(—dii)
L= — 10g = IOg 1+¢y exp(—dij) . (216)
‘ exp(—dys) + Y7 exp(—dyj) ;
Hence, the loss increases monotonically with the sum of exponentiated distances .5; := Zj\;z exp(—d;j).

This means it is enough to examine the behaviour of S; in the regimes of small and large 7:

e Small 7. When 7 < 1, the dominant contributions to S; arise from distances d;; where s;; ~ 1,
corresponding to HNS of the anchor. As a result, the loss function can be interpreted as maximising
the average distance to these HNS, encouraging the model to push embeddings further apart. This
leads to a more uniform and isotropic distribution in embedding space.

e Large 7. When 7 > 1, say, all distances d;; are of comparable magnitude, contributing roughly
equally to S;. Hence, the loss function can be intrepreted as maximising the average distance over
a broader range of neighbours. Since the number of ENS typically exceeds the number of HNS,
ENS collectively have a greater influence on the loss. Rather than learning ‘hard’ features that
enable better instance-discrimination among HNS, the model is instead encouraged to learn ‘easier’
patterns that allow for better group-wise discrimination. With this biased approach, the model tends
to increase the margin between clusters of samples, inducing semantic structure in representation
space.

3 Data'?

3.1 APOGEE Spectra

We use spectra and stellar parameters from APOGEE SDSS-IV DR17 [16, 34]. Observations were
captured with two high-resolution APOGEE spectrographs [68]: one on the 2.5 m Sloan Foundation
telescope [69] at Apache Point Observatory (APO), and another on the 2.5 m Irénée du Pont tele-
scope [70] at Las Campanas Observatory (LCO). Both spectrographs operate in the near-IR. H-band
(1.51-1.7 pum) at a high spectral resolution of R ~ 22,500 and can observe up to 300 objects simulta-
neously within 3° and 2° diameter FoVs, respectively [17, 71, 68]. Throughout the survey, APOGEE
preferentially targets RGB stars and other luminous post-main-sequence stars across the Milky Way
(MW), particularly in heavily dust-obscured parts of the Galactic bulge, disc and halo [72]. Raw data
are processed by an automated pipeline [73], which calibrates and subsamples them onto a common
wavelength grid with spacing AMN/nR, where n ~ 3.2 is the number of pixels per resolution element.
The final wavelength grid spans Ay, = 15,100121 to Amax. = 17,000;1.

Stellar parameters and chemical abundances are derived using the APOGEE Stellar Parameter and
Chemical Abundances Pipeline (ASPCAP) [74] in a two-step process. First, each observed APOGEE
spectrum is compared to a grid of synthetic spectra and y2-minimisation is used to identify the best-fit
parameters: Tog, log g, [M/H], [C/H], [N/Fe], [a/Fe] and vpjicro. The synthetic grid is generated via the
1D local thermodynamic equilibrium (LTE) branch of the ATLAS9/ASSeT synthesis code, developed by
R. Kurucz [41, 42]. Second, ASPCAP estimates individual element abundances—C, N, O, Na, Mg, Al,
Si, S, K, Ca, Ti, V, Mn, Fe, and Ni—by minimising residuals in selected spectral windows sensitive to
each element. A wrapper sets quality flags when fits are deemed unreliable, particularly when estimated
parameters lie near the edges of the grid, where interpolation or extrapolation can degrade accuracy.

'9All datasets have been provided via private communication by Dr Nathan Sandford (nathan.sandford@utoronto.ca).
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To minimise the propagation of ASPCAP errors, we exclude stars flagged for unreliable chemical
abundance measurements. We further restrict the dataset to high-quality, upper RGB stars—the
primary targets of NIRSpec spectroscopy—that meet the following criteria: SNR > 200, 4000 < T <
5000 K, 0.5 < log(g) < 2.0 and vscatter < 1.0 km/s. Notably, high vscatter values are typically indicative
of unresolved binaries [73], whose duplicated or blended spectral lines can degrade ASPCAP abundance
measurements. Applying these selection criteria to the full APOGEE survey yields a refined sample
of 19,001 stars, denoted A. Figure 3 shows a Kiel diagram, i.e., the log(g) versus Tog. plane, for the
APOGEE spectra in A.
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Figure 3: Kiel diagram of qualified APOGEE spectra, whose parameters are derived from ASPCAP.
Note different colours indicate different values of [Fe/H] metallicity.

We split A into training, validation and test sets in a 5:1:2 ratio. This split is chosen to maximise the
number of stars in the training set, while having at least 2,000 stars in the validation and tests sets to
be representative of the full stellar parameter range.

3.2 JWST/NIRSpec Spectra
3.2.1 Ab initio Data

Ab initio spectra are generated using the same method as described in Ting et al. [75] and Sandford et
al. [76]. Briefly, 1D LTE model atmospheres are computed using the ATLAS12 program, developed and
maintained by R. Kurucz [35, 36, 37, 38, 39, 40]. Each model adopts one of 19,001 sets of APOGEE
stellar parameters, along with solar abundances obtained from Asplund et al. [77]. Convection is
modelled according to standard 1D mixing length theory (MLT) with o = 1.25 and no overshooting.
Spectra are computed with the SYNTHE program, also due to R. Kurucz, at a nominal resolution of
R = 300,000. They are subsequently continuum-normalised, convolved down to the average resolution
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of NIRSpec (R = 2,700) and subsampled onto a common wavelength grid with A\/nR, where n ~ 4.6
is the number of pixels per resolution element. The final wavelength grid covers Api,. = 9,00();1 to
Amax. = 18,0004. We denote the set of synthetic NIRSpec spectra as J, which we split into training,
validation and test sets in a 5:1:2 ratio.

In this way, we obtain a database J x A, consisting of 19,001 paired NIRSpec and APOGEE spectra,
each characterised by a common set of stellar labels.

3.2.2 Observed Data

We use a small sample (n = 59) of representative traces on the NIRSpec detector. The multi-object
spectroscopic (MOS) observations are collected as part of the JWST-GO-3788 program (PI: Wiesz),
using microshutter array (MSA) in a 3.6 x 3.4 arcmin? FoV over near-IR wavelength ranges (0.97-1.82
pum) at a resolution R = 2,700 [2]. Targets are predominately stars on the upper RGB branch in three
isolated dwarf galaxies—Tucana, Leo A and IC 1613—for which [« /Fe] and [Fe/H] can be measured to
0.1-0.3 dex precision.

As shown in Figure 4(a), the MSA occupies NIRSpec’s slit plane in a 2 x 2 mosaic of micro-shutter
quadrants. It is further mounted on the detector plane, which consists of two adjacent detector arrays,
NRS1 and NRS2, seprated by a 2.8 mm horizontal gap in the direction of dispersion. As shown in
Figure 4(b), the presence of this gap causes portions of NIRSpec spectra to be lost if they happen to
project onto it.

Mounting Frame Active MSA Area

\ /

3.4

NRS1 || NR§

/ -
Detector Array 3.6’ 1.'0 1.'1 1.'2 1:3 1.'4 1.'5 1j6 1.r7 1.8
Wavelength (pm)

(a) (b)

< JJ
)
1
|

 J

Figure 4: (a) Layout of the NIRSpec slit plane, adapted from [78]. The four MSA quadrants covering
3.6 x 3.4 arcmin? on the sky, are mounted via a frame onto the detector plane. The two large squares
mark the outer boundaries of the active areas of the two detector arrays, NRS1 and NRS2. The
dispersion direction is horizontal. (b) Sample representative spectral traces on the NIRSpec detector,
adapted from [79]. Each trace, widened for clarity, exhibits missing wavelength segments lost to the
detector gaps.
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Figure 5: Schematic of the CNN architecture used to predict stellar properties from single-modal
spectra. The input layer is followed by pooling layers with 4 and 16 filters, respectively. An average-
pooling layer with a window length of 4 is applied next, followed by three fully connected layers with
256, 128, and 20 nodes. The final output layer provides the predicted stellar properties: Tig,log g and
18 elemental abundances [X/H].

4 Model Implementation

We present a two-step procedure to train our cross-modal spectral encoders in silico:

(i) We pre-train single-modal CNNs in a supervised setting to predict stellar labels from spectroscopic
data, using a modified STARNET [6].

(ii) We fine-tune our pre-trained CNNs in a contrastive setting, aligning their cross-modal embeddings
in a shared latent space, using a modified ASTROCLIP [27].

Notably, our strategy to initialise CLIP with pre-trained models-rather than to train the entire SSL
framework from scratch—has been shown to stabilise training and reduce the computational costs
associated with CLIP [80]. Further details on the implementation and training of these models are
provided below.

4.1 Spectral Encoder Model
4.1.1 Implementation

Our spectral encoder is closely modelled after STARNET [6]. In particular, the CNN model we implement
has N¢gr, = 2 convolutional and Ngcr, = 3 fully-connected layers, which together perform stellar property
prediction of 20 stellar parameters.

Figure 5 shows the sequential operations required to transform single-modal spectra to a stellar property
prediction. The leftmost block represents the input spectra, either obtained from A or J. The first
operation applied to the input is a 1D-convolution using 1 input channel and p = 4 output channels,
corresponding to the number of learnable filters of size s() = 8 (and stride = 1). An additional 1D-
convolution is performed on each channel of the previous layer, resulting in p x ¢ = 16 output channels,
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using 16 learnable filters of size s(2) = 8. After each convolution, the ELU activation function is applied
to introduce non-linearities into the model.

The output channels produced by the second convolution are then downsampled via average-pooling,
with a window length of w = 4, and flattened to a single dimension. The flattened vectors are then
passed to the fully connected part of the network. Here, they are mapped to three multiperceptron
(MLP) layers with N; = 256, Ny = 128 and N3 = 20 hidden units, successively, each with their own
learnable sets of weights and biases. After the first two MLP layers, ELU activation is applied. After
the last MLP layer, the model outputs the stellar property estimation Y.

Though we adopt the model architecture and hyperparameter selection (p, g, w, N1, N3) from [6], we
distinguish our work in the following ways:

e We use ELU rather than ReLU (or sigmoid or tanh), having found that it promotes training stability
and enables convergence to lower loss values.

e We use average-pooling rather than max-pooling, having found that it better preserves features
relevant to regression.

e We introduce a learning rate scheduler to reduce training time.

e We implement an early stopping criterion based on the validation loss to mitigate overfitting.

o We predict N3 = 20 rather than 3 stellar parameters with high precision and accuracy.

4.1.2 Training Procedure

We implement our model architecture and training procedure in PyTorch [81]. For our training task,
which is to regress stellar properties, the loss function we optimise is the MSE:

N

LSy (4.1)

Nbatch 1
1=

LrsE =

where Npaten 18 the number of spectra in the batch, and Y; and Y; denote the true and predicted
stellar property of interest, respectively. Note each Y; is Z-score normalised to have zero mean and unit
variance, ensuring that all properties are roughly equally weighted in LysE.

We train two single-modal encoders, fs and gg, on APOGEE A and NIRSpec J data, respectively. For
each encoder we train, the corresponding training data are batched into sets of Nf)g%g}ll = 64 stars. While
the model weights ¢ (or #) are randomly initalised, the network implements a training procedure to
update these weights, as follows (see [82]):

(1) forward pass the batch through the network to compute Ybatch,
(2) compute Lysg according to Equation (4.1),

(3) backpropagate Lysg through each layer of the network,

(4) compute the gradient AyLysk (or AgLwmsE),

(5) update the weights to minimise Lysg.

Steps (1) through (5) are repeated for each training batch iteration, resulting in a steady convergence
of the training loss over Nepochs = 15 or until an early stopping criterion is met. Specifically, step
(5) is carried out using PyTorch’s Adam optimiser (79 = 0.001), with a StepLR scheduler (Tiep = 5,
v = 0.1). Altogether, for 11,875 training spectra of either modality and 8.4 million NN parameters,
training proceeded in Ngteps = 2,775 steps and converged in ~20 seconds, using 1 NVIDIA TITAN Xp
GPU.
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During training, we also monitor the validation loss. Specifically, at the start of each training epoch,
we carry out steps (1) and (2) on the validation set of 2,375 spectra, processed in batches of size
Ng’g%'ch = 128. This provides a diagnostic of how generalisable the model is to unseen data. To
mitigate overfitting, we also implement an early stopping criterion with the following policy: Should the
validation loss not improve for Ny, = 3 consecutive epochs within a tolerance of €y, = 1073, training is
halted. Future work could explore performing grid searches over a heuristic choice of hyperparameters
{(no, Tstep,v)}, choosing the combination that yields the best performance on the validation set—a
clear improvement over choosing the hyperparameters ad hoc.

All model and training parameters are summarised in Table 1.

Table 1: Model and training parameters for CNN Encoders

Parameter Setting(s) Description
n 8,575 (8,192) number of pixels in each spectrum in A (J)
Ncr, 2 number of convolutional layers (CL)
P 4 number of output channels of CL1
s(1) 8 filter size of CL1
pXq 16 number of output channels of CL2
s 8 filter size of CL2
Archi stride 1 convolution stride of both CLs
rchitecture ] .
w 4 width of pooling kernel
Nrcr, 3 number of fully connected layers (FCL)
N 256 number of hidden units in FCL1
N 128 number of hidden units in FCL2
N3 20 number of hidden units in FCL3
1) ELU activation function
optimiser Adam —
) 1073 base learning rate (LR)
Optimisation Tiep 5 LR decay period/step size
y 1071 LR decay multiplicative factor
LMSE MSE loss function
Nfrain 64 training batch size
Nepochs 15 number of training epochs
Training Nsteps 2,775 number of training steps
Nstop 3 number of epochs to halt training if no improvement
€tol 1072 early stopping tolerance

4.1.3 Model Evaluation

Each single-modal encoder is evaluated on its corresponding held-out test set of 4,751 spectra, batched
into sets of Nt = 128. The residuals between true and predicted targets are then computed, as
shown in Figure 7. To quantify the model performance, we compute three evaluation metrics: the

coefficient of determination 72, the bias A and the root-mean-squared error (RMSE), respectively given

15



as:

1 N
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7

)

)

2

RMSE = , (4.4)

where N is the number of observations in the test set and Y and Y are the true and predicted targets
of the stellar property of interest, respectively. The term o2 denotes the variance of Y = (Y1,...,Yn).
In general, 72 ~ 1 indicates the model explains most of the variation in Y, while 72 ~ 0 indicates it
captures little to no variation. Additionally, in general, smaller bias and RMSE values indicate better
model performance.

4.2

StarCLIP Model

4.2.1 Spectrum Preprocessing

To simulate physical corruptions in observed NIRSpec data, we apply a (sub)set of the following semi-
empirical, stochastic transformations to each spectrum in J:

(1)

(i)
(iii)

Fized-data Substitution. The Paschen series have been long used for the determination of funda-
mental parameters of stellar atmospheres [83, 84, 85]. In fact, the Paschen H-lines contain some
of the most informative pixels for estimating Teg and log g (see, e.g., [86]). However, observational
challenges, large uncertainties in absorption-line measurements and limitations of LTE modelling
can potentially introduce important systematic and model-dependent errors near the Paschen
lines. As such, a desideratum in this work is to reduce the model’s sensitivity to potentially
poorly modelled or corrupted data near these regions. To this end, we fix an arbitrary spectrum
in J and isolate four ‘reference’ neighbourhoods of radius ~ 10A centred on the Paschen lines:
9,548.6, 10,052.1, 10,941.1 and 12,821.6A. Given another spectrum in J, we replace its flux values
in these neighbourhoods with the reference values just obtained.

Pizel Masking. We select uniformly at random 0.1% of pixels to set to unity'', roughly the
expected fraction of non-operable pixels in the NIRSpec detectors [3].

Denormalisation. Observed spectra are distorted by broad telluric bands, instrumental effects of
the spectrograph, and artifacts introduced during the pipeline reduction process (see, e.g., [87]).
To emulate imperfections in continuum normalisation, we multiply the given spectrum in J by a
low-amplitude eighth-order polynomial perturbation P, defined as follows:

-””=1+a<m£%&5?%07 (4.5)

where

d Ai — Ami
)\ — ; )\/ z" )\/ — 17— \min
p( ) z; © ( ) )\max - )\min

0.1, = > PN (16)
=1

(2

and o = 0.01, d = 8, ¢; ~ U(=1,1), Amin = 9,0004, Aoy = 18,0004, n = 8,192. Note the choice
of P is heuristic, serving as an initial approximation for modelling normalisation errors.

1YWe choose unity rather than to 0 (or NaN), so to help mitigate discontinuities in the flux profile of the data.
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(iv) Gaussian Noise. We randomly add Gaussian noise to the spectrum by sampling the noise level
from a normal distribution A'(0, SNR™!), where SNR ~ 2/(30, 300), roughly the expected signal-
to-noise (SNR) range for NIRSpec detectors [2].

(v) Wavelength Masking. We use an automated routine in Python’s OpenCV [88] to detect gap bound-
aries in a grayscale image of 59 spectral traces, as exemplified in Figure 4(b). Each trace admits
two gaps: the first is characterised by its leftmost x-position Zgap1 and width wgap,1, while the
second is defined by its width wgap 2, as its rightmost endpoint is fixed at Apax = 18,00();1. To
model the distribution of these gaps, we fit nonparametric distributions to the empirical measure-
ments {Zgap.1}, {Weap,1} and {wgap 2} using Gaussian kernel density estimation (KDE). When
sampling new z-positions and widths of gaps from the KDEs, we apply a ReLU transformation
to enforce non-negativity:

x/gap,l = maX(()? xgap,l)
wéapyi = max(0, Wgap i),
1 = 1,2. The sampled gaps are then applied to a given spectrum in J, replacing the corresponding

flux values within these missing intervals with unity.

The mock dataset J is created by replicating each entry in J five times and augmenting each instance
with observational signatures (iv) and (v). Its pair, A, is similarly defined by replicating each entry in
A five times without additional transformation. This results in an augmented dataset J x A of 95,005
paired mock NIRSpec x APOGEE spectra. We partition J x A into training, validation and test
subsets using a 5:1:2 split at the instance-group level, ensuring all augmented views of a given original
spectrum are assigned to the same subset.

To mimic the low-data regime of JWST, we partition J into 30 bins based on [Fe/H] values, where the
number of bins is determine with Freedman-Diaconis’ rule [89]. We then randomly subsample n = 250
spectra from J, whose [Fe/H] values are distributed approximately uniformly across all bins. Applying
transformations (iv) and (v) to this subset gives the mock sample [7'°; applying all transformations
from (i) to (v) gives the extended-mock sample J™. We split J'° x J™ into training, validation and
test sets in a 5:1:2 ratio.

We further enrich the test split of 7" by generating an additional 5,000 extended-mock spectra, whose
[Fe/H] values remain approximately uniformly distributed across all bins. The resulting augmented
test split, now comprising 5,062 spectra, reduces sparsity in visualisations and enhances the represen-
tativeness of the test set across the entire stellar parameter range.

Figure 6 illustrates the complete sequence of stochastic transformations (i)-(v) applied to a NIRSpec
spectrum in Jy;. It provides a close view of the fixed-data substitution process, described in (i),
demonstrating how spectral regions near Paschen lines are replaced by fixed values from a reference
spectrum in J.

4.2.2 Implementation

Our CLIP models are closely modified versions of ASTROCLIP [27]. As illustrated in Figure 1, each
network is a sort of compositional model, consisting of a pair of cross-modal spectral encoders with 20
embedding dimensions. The output of each network is a pair of cross-modal embeddings that reside in
a shared, CLIP-aligned latent space.

We train two versions of the model. The first, STARCLIP, employs pre-trained encoders fy and g4
to initialise the mapping of J and A into latent space. Both encoders remain unfrozen, allowing
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Figure 6: Sequence of stochastic transformations applied to a representative spectrum from J, mapping
it to an element of J". The top panels show the original spectrum, successively transformed through
()-(ii) fixed-data substitution and pixel masking, (iii) denormalisation, (iv) Gaussian noise addition,
and (v) wavelength masking. The red lines in panel (i)-(ii) indicate the four neighbourhoods substituted
using the arbitrarily-chosen ‘reference’ spectrum in J, thickened for clarity. The bottom panel (A)
highlights the spectrum’s original neighbourhood of radius ~ 104 centred on the Paschen line 12,821.6A,
marked with dashed lines. Panel (B) shows the same neighbourhood after applying (i)-(ii), with the
substituted region from the reference spectrum highlighted in red.

STARCLIP to align the representation spaces of the two modalities (see, e.g., [90]). After training, the
initial weights 6 and ¢ are updated to learned weights © and ®. The second version, MOCKSTARCLIP,
uses a pair of identically initialised encoders, both denoted fg, to map J'° and J" into the same latent
space. While the encoder for J' is frozen, the fully-connected part of the encoder for J" is unfrozen,
enabling MOCKSTARCLIP to be fine-tuned on physical corruptions in the extended-mock data. After
training, the learned weights of this latter encoder are thus updated from © to ©*.

4.2.3 Training Procedure

We implement our training procedure in PyTorch [81]. We first batch the training splits of J x A
(7% x JM) into mini-batches of NTai% = 16 (8) pairs of stars. Optimisation is performed using the
Adam optimiser with base learning rates of 79 = 1 x 104 (1 x 1073), controlled by a cosine annealing
scheduler and weight decay parameter of A = 0.2 (0). We train our models for Nepochs = 30 on 1
NVIDIA TITAN Xp GPU, which results roughly in Tiain ~ 1 h (~ 20 min.) of training time.

Similar to the findings in Parker et al. [27], we observe that STARCLIP performs best when the value of
7 in Equation (2.11) is fixed to 15.5. In contrast, following the approach of Radford et al. [58], we find
MocKSTARCLIP achieves better performance when 7 is treated as a learnable parameter in gradient
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descent, initialised to 0.07—the default starting value in CLIP. In view of §2.2.2, these choices of T are
well-motivated: augmented views with frequent semantics in J x A benefit from a larger 7 to preserve
local semantic structure, whereas a smaller 7 would undesirably push semantically consistent samples
apart. Conversely, the samples in Jj, X Jpi, which exhibit rarer semantics, benefit from a smaller 7
to make their features more discriminative and separable. By computing Equation (2.11) between all
cross-modal pairs in J x A and J'° x J", we maximise the similarity of embeddings corresponding to
(augmented views of ) the same spectrum while minimising similarity with embeddings of other spectra.

All model and training parameters are summarised in Table 2.

Table 2: Model and training parameters for CLIP models

Parameter Value(s)/Setting(s) Description
STARCLIP MoCKSTARCLIP
X x)Y J x A Jlo x ghi cross-modal input data
. Winit, 1 fo Jo encoder 1 weight init.
Architecture Winit,2 9o fo encoder 2 weight init.
T 15.5 (fixed) 0.07 (learnable)  temperature parameter
optimiser Adam Adam —
o 10~* 1073 base learning rate (LR)
A 0.2 0 LR weight decay
Optimisation scheduler Cosine Annealing Cosine Annealing —
Tinax 80 80 max number of iterations
Nmin 5x 1076 5x 1076 minimum LR
L InfoNCE InfoNCE loss function
.. Njfrain 16 8 training batch size
Training Nepochs 30 30 number of training epochs

4.2.4 Model Evaluation

We embed the held-out test spectra, generating discriminative representations that generalise to down-
stream tasks without the need for fine-tuning. We denote the elementwise-paired set of STARCLIP
embeddings by Z7 x ZA, and the corresponding set of MOCKSTARCLIP embeddings by Z'° x ZM,
where:

27 = fo(J), 27 := ga(A), (4.9)
7' = fo(T°), ZM:= fo-(TM). (4.10)

To evaluate the effectiveness of similarity search, we adopt ad hoc versions of two widely used evaluation
metrics in information retrieval: SuccessRate@k and Mean Reciprocal Rank (MRR) [91, 92, 93]. In our
work, SuccessRate@k measures the proportion of queries for which the true cross-modal pair or any of
its augmented views appear in the top k ranked results. Specifically,

QI
> " 6(FRank, < k), (4.11)

q=1

SuccessRate@k = —
Q)
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where @ is a set of tested queries and §(-) is the indicator function, and FRank, [94] denotes the rank
of the first correct match (i.e., the true cross-modal pair or any of its augmented views) in the result
list for query q. We report SuccessRate@k for k = 1,5,10 and 50, reflecting the typical sizes of results
users consider in retrieval tasks [93]. The MRR is the average of the reciprocal ranks of results of @,
where the reciprocal rank is the inverse of the rank of the FRank. Thus, the formula is:

QI

1 1
MRR = — _ 4.12
Q1 2 [Rardy (412

In general, higher SuccessRate@k and MRR values imply better search code performance. To assess
the accuracy of stellar property inference, we compute the three evaluation metrics in Equations (4.2)
to (4.4).

5 Results

5.1 CNN Stellar Property Recovery

We evaluate the performance of the NIRSpec and APOGEE CNN models in recovering 20 stellar
parameters from 2,375 test spectra in J and A, respectively. Figure 7 shows the predictions for siz
stellar properties derived from both CNNs, including three atmospheric parameters (Tes, log(g), [Fe/H]),
along with three chemical abundances [X/H] selected to represent high, median and low RMSE scores.
Following the approach of [82], the top panel in Figure 7 shows model-based predictions against the
true targets, while the bottom panel displays residuals, highlighting regions where the models are
biased. In this panel, we also mark the region within 1 standard deviation of a perfect prediction. For
completeness, Table 4 in the Appendix reports the evaluation metrics {r?, A, RMSE} for all 20 stellar
parameters derived from both CNNs. Note these parameters are not independent but exhibit intrinsic
degeneracies, as exemplified by the correlation between T, and log g in Figure 3.

As shown in Table 4, both CNNs recover all stellar properties well, with 2 scores exceeding ~ 0.88
and RMSE precisions comparable to—if not better than—the estimated precisions of the SDSS-IV
DR17 APOGEE/APSCAP measurements [95]. In particular, the NIRSpec (APOGEE) model predicts
Test, log g and metallicities to RMSE precisions of 280 (270) K, 0.09 (0.09) dex and < 0.1 dex, re-
spectively. These are in strong agreement with the estimated precisions of calibrated ASPCAP results,
which find T.g is measured with a precision better than 150 K, log g better than 0.2 dex and metallicites
better than 0.1 dex. Moreover, the overall biases are negligible, typically an order of magnitude smaller
than the RMSEs. As shown in the bottom panels of Figure 7, most of the model bias occurs at the
limits of parameter space, where predictions exhibit ‘regression towards the mean’, in which low values
tend to be over-predicted and high values under-predicted. A potential reason for this behaviour is
that stars with extreme values are underrepresented and of lower quality (i.e., low SNR, weak spectral
features) in our catalogs, making it difficult for the models to learn this region of parameter space
sufficiently well at training time. Another contributing factor may be due to degeneracies between
data and labels or any discrete, abrupt changes in data-label relationships due to underlying physical
processes [82]. To illustrate, for T,g values larger than ~ 4.5 x 10* K, the predictions are systematically
negatively biased, especially for stars with relatively low SNR. This is likely caused by the reduced
number of spectral features in hotter spectra and the increasing degeneracy between temperature and
gravity measurements in warmer stars.

In general, the NIRSpec CNN is capable of predicting values closer to the ASPCAP stellar parameters
than the APOGEE CNN. This arises from variations in the training data: observed spectra in A

20



[Fe/H] (dex)

T (10°K) log(g) (dex)
5.00 9 2. 0.974 2 0.899 2 0.988
g A: 0.000 207 A: 0.005 A: 0.004
§ 4.75 { RMSE: 0.028 RMSE: 0.089 RMSE: 0.052
?2 4.50
S
5 4.25 1
[a W)
4.00
5 4.00 425 450 475
e o
§ 0.0
g =014, e o
U% E 4.00 425 4530 475
o] .
= [Si/H] (dex) [Co/H] (dex) [Na/H] (dex)
Z r2: 0.988 19420972 14 7% 0.898
A: 0.004 A: 0.006 A: 0.000
01 RMSE: 0.042 0 4 RMSE: 0.092 0 ] RMSE: 0.173
o -1 1]
-2 9]
log(g) (dex) [Fe/H] (dex)
5.00 9 42: 0.976 172 0.898 2 0.985
Y A: 0.001 A: 0.000 A: 0.004
;; RMSE: 0.027 RMSE: 0.090 RMSE: 0.057
g
=
i
[al)
g
&
o
A
B g
U &
o .
A . [Ni/H] (dex) [Co/H] (dex) [Na/H] (dex)
< 72 0.983 1972 0.965 1172 0.892
A: 0.003 A: 0.009

A: 0.002
RMSE: 0.063

RMSE: 0.102

04 RMSE: 0.177 .

Figure 7: Performance of the single-modal CNN models in predicting fundamental atmospheric param-
eters along with three chemical abundances representative of high, median, and low RMSE scores. The
top subpanels report the r2, A, and RMSE of the predictions. The bottom subpanels show resid-
uals, with shaded regions indicating one standard deviation. The red line denotes perfect prediction.

Adapted from [82].
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have different shapes and profiles than synthetic spectra in J, characterised by noise, missingness,
instrumental broadening, and other signature effects, which ab initio models can at most partially
capture. As such, the NIRSpec CNN is better poised to capture relevant spectral features in the data,
leading to more accurate parameter estimates. In §4.2.1, we describe a pipeline aimed at minimising
the synthetic gap between the feature distributions of synthetic and observed spectra.

5.2 SSL Downstream Tasks
5.2.1 Cosine Similarity Search

We evaluate the retrieval performance of Cross-modal Cosine Similarity Search (CrossCSS) on test
embeddings generated by STARCLIP and MOCKSTARCLIP. Briefly, given a search query from one
modality (e.g., Z7), CrossCSS computes its cosine similarity with all embeddings from the complimen-
tary modality (e.g., ZA), ranks the results by similarity, and retrieves the top-k most relevant matches.
To assess the impact of CLIP alignment, we compare CrossCSS performance on CLIP-aligned embed-
dings against corresponding baseline searches using raw spectra: J x [A] and J'° x J", respectively.'?

Table 3: Overall Performance of CrossCSS on CLIP Embeddings and Baselines (best scores in boldface)

Model Query Retrieved R@I RQ@5 R@10 R@50 MRR
zJ ZA 0.14 0.14 0.24 057  0.17
STARCLIP 74 77 0.15 0.41 056 0.86 0.28
Baseline J [A] 0.00 0.00 0.00 0.00 0.00
[A] J 0.00 0.00 0.00 0.01 0.00
A zhi 0.06 0.22 0.35 0.75 0.19
MOOKSTARCLIP Zlo 0.08 027 040 075 0.16
Buscline g Jhi 0.00 0.02 003 011  0.02
J Jlo 0.00 0.02 0.03 0.11  0.02

Table 3 reports CrossCSS retrieval performance for both CLIP models against their respective baselines,
measured in terms of SuccessRate@k and MRR. Columns R@1, R@5, R@10 and R@50 correspond to
SuccessRate@Fk at k = 1,5,10 and 50, respectively. For each model, the first two rows report CrossCSS
on CLIP-aligned embeddings, with query and retrieved modalities alternated; the next two rows report
baseline performance on raw spectra.

As shown in Table 3, CrossCSS applied to CLIP-aligned embeddings consistently outperforms all base-
line methods. In contrast, CrossCSS on raw spectra often fails to retrieve meaningful matches, in-
dicating that CLIP alignment is essential for enabling CrossCSS to retrieve semantically meaningful
cross-modal pairs. Indeed, averaged across both query directions, CrossCSS with MOCKSTARCLIP
embeddings improves SuccessRate@k by 1,000%, 1,067% and 582% for k is 5, 10 and 50, respectively,
relative to its unaligned baseline. These improvements reflect at least an order-of-magnitude increase
in successful retrievals—i.e., instances where the true cross-modal pair (or one of its augmentations)
appears within the top-k results. These findings demonstrate that CLIP alignment enhances shared

12WWe define [A] as the truncated version of A, obtained by cropping each spectrum by 8,575 — 8,192 = 383 pixels to
remove missing regions (15,100715,152A and 16,969-17,000 A), ensuring dimensional agreement with J for computing
cosine similarity in Equation (2.12).
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semantic structure across modalities, enabling CrossCSS to retrieve results that more faithfully reflect
the user’s query intent.

Interestingly, while both query directions yield comparable performance for MOCKSTARCLIP and its
baseline, we observe a notable asymmetry in retrieval results for STARCLIP. Specifically, querying
APOGEE embeddings in Z4 to retrieve NIRSpec embeddings in Z7 consistently outperforms the re-
verse. This suggests that the APOGEE encoder gg produces more discriminative or higher-quality
embeddings than the NIRSpec encoder fg, potentially due to inherent differences in the spectral char-
acteristics of APOGEE and NIRSpec data.

5.2.2 Dimensionality Reduction

Parameterised models with many correlated parameters often amenable to dimensionality reduction
(DR) methods, which aim to identify a lower-rank latent space more directly aligned with the underlying
physical variables governing the system (see, e.g., [96]). We apply Principal Component Analysis (PCA)
[97] to the joint test embeddings of STARCLIP (Z7 U Z4) and MOCKSTARCLIP (Z'° U ZM) to assess
whether they encode core stellar properties. Briefly, given a set of test embeddings, PCA decomposes the
sample covariance matrix into a set of orthogonal eigenvectors ranked by their associated eigenvalues—
or, equivalently, by the variance they account for. Eigenvectors accounting for most of the variance
are assumed to reflect real correlations between physical parameters, while those explaining minimal
variance are typically attributed to measurement noise and are thus discarded [96]. This yields a
reduced embedding space, in which the distribution of stellar fundamental parameters can be more
easily visualised.

Using the scikit-learn [98] PCA implementation, we project the test embeddings of STARCLIP
and MOCKSTARCLIP onto the linear subspace spanned by their top two principal components, which
together account for ~41% and ~50% of the total sample variance, respectively. Figure 8 shows
the resulting projections, with each compressed embedding colour-coded by one of three atmospheric
parameters (T, log g, [Fe/H]) or a representative chemical abundance ([Mg/Fe]). In general, Teg and
log g are fundamental parameters for classifying stars, while [Fe/H] and [Mg/Fe] are key tracers of
the chemical and dynamic evolution of galaxies (see, e.g., [29]), and therefore are listed among the
top-priority elements targeted by the APOGEE survey.

The projections exhibit a noisy but broadly continuous evolution of stellar parameters across the reduced
embedding space, suggesting that STARCLIP and MOCKSTARCLIP arrange embeddings around shared
physical semantics in the higher-dimensional latent space. Interestingly, MOCKSTARCLIP projections
exhibit clearer structure, characterised by two stellar parameter gradients that are closely aligned with
its principal component axes. This suggests MOCKSTARCLIP has learned more disentangled latent
representations in the higher-dimensional space, in which individual axes correspond more directly to
underlying astrophysical variables. Altogether, the roughly continuous variation of stellar parameters
across the reduce space offers a qualitative indication that regression from CLIP-aligned embeddings
to stellar labels should be possible. Equipped with this insight, we proceed in §5.2.3 to quantitatively
recover stellar properties from the learned embeddings.

5.2.3 Stellar Property Recovery

We show STARCLIP and MOCKSTARCLIP are capable of inferring stellar properties from learned
embeddings in Z7 and Z", respectively. Conventional ML approaches to this task would typically rely
on bespoke CNNs, entailing the development of an end-to-end pipeline from scratch [6, 82]. In contrast,
CLIP-aligned embeddings already capture expressive features of the input stars, enabling us to apply a
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Figure 8: PCA projections of STARCLIP (left) and MOCKSTARCLIP (right) test embeddings onto
their first two principal components (PC). Each point represents a compressed embedding, colour-coded
by one of four stellar parameters: Teg, log g, [Fe/H], or [Mg/Fe], as indicated.

simple multi-output linear probe to regress catalog-reported stellar properties directly from the CLIP
embeddings. As a supervised baseline, we include a modified STARNET CNN [6], described in §4.1.1,
trained end-to-end on the spectral databases J and J hi Ty account for differences in dataset size, we
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adjust the following training hyperparameters:

e For the CNN trained on 7, we use a reduced learning rate ' = 5 x 1074,
e For the CNN trained on J™, we enable weight decay at a rate of N’ = 5 x 10~% and use batch sizes
of NYA, = 16, Ny, = 4 and N{ii, = 125,

To mimic the MOCKSTARCLIP setup, the CNN trained on J" is also initialised with weights pretrained
on J and its convolutional layers are frozen at training time. Importantly, in all analyses involving the
augmented datasets Z7 and J, we perform probing at the instance-group level: we mean-aggregate
the predictions from all augmented views of the same star, ensuring each star contributes exactly one
prediction in downstream evaluation. An empirical spread s is computed from the five predictions
and added in quadrature, element-wise, to the estimated intrinsic scatter oy, from SDSS-IV DR17
APOGEE measurements [95]. This gives a total estimated uncertainty:

o=/s*+02,. (5.1)

Figure 9 shows the predictions derived from (a) STARCLIP and (b) MOCKSTARCLIP, along with their
respective CNN baselines, across six representative stellar properties: three atmospheric parameters and
three chemical abundances with high, median and low RMSE scores. Complete evaluation metrics for
all 20 stellar parameters are provided in Tables 5 and 6 and Figures 10 and 11 in the Appendix. Again,
we find that both CLIP-based models recover all stellar properties with high accuracy, achieving 2
scores typically exceeding ~0.90, RMSE scores comparable to the estimated precisions of SDSS-IV
DR17 APOGEE measurements [95], and minimal biases—generally one to two orders smaller than the
corresponding RMSE values. Consistent with the findings of [27], our CLIP-based models successfully
demonstrate an ability to encode core physical attributes of the input stars in their embeddings, despite
undergoing no task-specific fine-tuning. Interestingly, while STARCLIP outperforms MOCKSTARCLIP
across most tasks, as anticipated, it achieves equal or slightly lower 72 scores for [S/H], [Cr/H], [Co/H]
and [Ce/H]. One potential reason for this behaviour is that MOCKSTARCLIP, trained with smaller
7, induces a more separable and discriminative embedding space, which may help to resolve subtle
or degenerate spectral features— and thereby improve predictions for parameters with weaker spectral
signatures. Finally, although both CLIP-based models perform competitively, they typically underper-
form relative to their supervised counterparts, particularly in terms of r2. Consistent with [99], [100]
and [101], these findings suggest that specialised, pre-trained foundation models have not yet surpassed
traditional supervised approaches trained directly on downstream task data. Nonetheless, the ability
of our CLIP-based models to generalise well in low-data regimes, enrich shared semantic information,
and transfer to downstream tasks without fine-tuning highlights important advantages of our approach
over supervised analysis.

6 Conclusion

We have presented STARCLIP, and its variant MOCKSTARCLIP, versatile cross-modal foundation
models for stellar spectroscopy. Both models encode in their embeddings core physical information
about the underlying stars, leading to strong performance across a variety of downstream tasks, includ-
ing cosine similarity search and stellar property estimation. We believe these rich embeddings have the
potential to serve as off-the-shelf tools for building higher-level models, facilitating analysis of NIRSpec
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Figure 9: Performance of (a) STARCLIP and (b) MOCKSTARCLIP, and their respective baselines, in
predicting a common set of fundamental atmospheric parameters and representative chemical abun-
dances. Error bars denote standard deviations computed via Equation (5.1). In general, both models
are in agreement with but underperform relative to their respective supervised counterparts.
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data. This, in turn, will make accessible a vast wealth of chemical information in the spectra of
stars outside the MW. In the future, we plan to extend MOCKSTARCLIP’s capabilities to integrate
observed NIRSpec data, validating its real-world applicability. While our pipeline implements semi-
empirical, stochastic transformations to simulate physical corruptions in observed data, the fidelity
of these simulations is not yet clear. Ultimately, fine-tuning the model to work well with observed
datasets would help set the stage for the broader adoption of foundation models in extragalactic stellar
spectroscopy, poising the field for transformative growth.
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A Appendix

Table 4: Single-modal CNN Performance on Stellar Property Recovery

Parameter NIRSpec APOGEE

r? A RMSE | r? A RMSE
Tosr 0.974 0.000 0.028 | 0.976 0.001 0.027
log(g) 0.899 0.005 0.089 | 0.898 0.000 0.090
[C/H] 0.976 0.004 0.090 | 0.970 0.003 0.102
[N/H] 0.947 0.000 0.107 | 0.944 0.008 0.109
[O/H] 0.982 0.001 0.051 | 0.969 0.003 0.068
[Na/H] 0.898 0.000 0.173 | 0.892 0.009 0.177
[Mg/H] 0.982 0.002 0.053 | 0.965 0.003 0.075
[Al/H] 0.952 0.002 0.105 | 0.939 0.008 0.119
[Si/H] 0.988 0.004 0.042 | 0.971 0.004 0.065
[S/H] 0.911 0.001 0.101 | 0.906 0.004 0.103
[K/H] 0.902 0.002 0.132 | 0.888 0.004 0.141
[Ca/H] 0.981 0.005 0.052 | 0.969 0.003 0.067

Continued on next page
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Parameter NIRSpec APOGEE
r? A RMSE | r? A RMSE

[Ti/H] 0.981 0.003 0.070 | 0.969 0.004 0.092
[V/H] 0.898 0.001 0.151 | 0.899 0.007 0.151
[Cr/H] 0.958 0.007 0.107 | 0.954 0.000 0.112
[Mn/H] 0.980 0.003 0.085 | 0.980 0.004 0.085
[Fe/H] 0.988 0.004 0.051 | 0.984 0.004 0.058
[Co/H] 0.972 0.006 0.092 | 0.965 0.003 0.102
[Ni/H] 0.989 0.003 0.049 | 0.983 0.002 0.063
[Ce/H] 0.877 0.005 0.170 | 0.906 0.003 0.149

Table 5: STARCLIP and Supervised CNN Baseline Performance on Stellar Property Recovery

Parameter STARCLIP Supervised CNN
r? A RMSE| r? A RMSE

To 0.985 0.000 0.018 | 0.994 0.000 0.014
log(g) 0.921 0.002 0.068 | 0.948 0.001 0.064
[Fe/H] 0.990 0.000 0.032 | 0.996 0.000 0.031
[C/H] 0.975 0.000 0.062 | 0.985 0.000 0.074
[N/H] 0.957 0.000 0.068 | 0.973 0.000 0.077
[0/H] 0.977 0.001 0.041 | 0.990 0.001 0.040
[Na/H] 0.903 0.004 0.117 | 0.931 0.004 0.145
[Mg/H] 0.978 0.000 0.041 | 0.990 0.000 0.042
[Al/H] 0.963 0.001 0.061 | 0.974 0.001 0.078
[Si/H] 0.982 0.001 0.035 | 0.992 0.001 0.036
[S/H] 0.916 0.001 0.069 | 0.931 0.002 0.092
[K/H] 0.906 0.001 0.090 | 0.921 0.002 0.121
[Ca/H] 0.982 0.000 0.035 | 0.989 0.000 0.041
[Ti/H] 0.984 0.000 0.045 | 0.990 0.000 0.053
[V/H] 0.917 0.001 0.093 | 0.923 0.002 0.130
[Cr/H] 0.962 0.002 0.071 | 0.970 0.003 0.093
[Mn/H] 0.988 0.001 0.047 | 0.993 0.001 0.051
[Co/H] 0.963 0.002 0.071 | 0.973 0.003 0.093
[Ni/H] 0.987 0.001 0.037 | 0.994 0.000 0.037
[Ce/H] 0.910 0.002 0.109 | 0.921 0.003 0.141
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Table 6: MOCKSTARCLIP and Supervised CNN Baseline Performance on Stellar Property Recovery

Parameter MocCKSTARCLIP Supervised CNN
r? A RMSE | r? A RMSE

Toq 0.938 0.005 0.044 | 0.968 0.006 0.032
log(g) 0.844 0.004 0.112 | 0.901 0.002 0.089
[Fe/H] 0.965 0.004 0.074 | 0.981 0.004 0.054
[C/H] 0.965 0.006 0.112 | 0.981 0.007 0.083
[N/H] 0.958 0.006 0.097 | 0.970 0.005 0.083
[O/H] 0.965 0.004 0.074 | 0.981 0.003 0.054
[Na/H] 0.906 0.015 0.169 | 0.921 0.015 0.155
[Mg/H] 0.969 0.004 0.073 | 0.985 0.004 0.051
[Al/H] 0.943 0.015 0.118 | 0.968 0.012 0.090
[Si/H] 0.973 0.003 0.064 | 0.986 0.002 0.047
[S/H] 0.928 0.006 0.092 | 0.944 0.006 0.082
[K/H] 0.926 0.017 0.116 | 0.948 0.007 0.098
[Ca/H] 0.975 0.002 0.061 | 0.985 0.003 0.048
[Ti/H] 0.977 0.003 0.081 | 0.985 0.000 0.066
[V/H] 0.895 0.009 0.154 | 0.919 0.016 0.137
[Cr/H] 0.952 0.008 0.117 | 0.961 0.013 0.107
[Mn/H] 0.984 0.005 0.077 | 0.989 0.003 0.064
[Co/H] 0.962 0.011 0.110 | 0.970 0.003 0.098
[Ni/H] 0.983 0.003 0.064 | 0.991 0.002 0.047
[Ce/H] 0.928 0.002 0.135 | 0.940 0.006 0.124
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Figure 10: Performance of STARCLIP in predicting the remaining 14 chemical abundances.
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Figure 11: Performance of MOCKSTARCLIP in predicting the remaining 14 chemical abundances.
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